Nonmuscle myosin 2 proteins encoded by Myh9, Myh10, and Myh14 are uniquely distributed in the tubular segments of murine kidney
نویسندگان
چکیده
The diverse epithelial cell types of the kidneys are segregated into nephron segments and the collecting ducts in order to endow each tubular segment with unique functions. The rich diversity of the epithelial cell types is highlighted by the unique membrane channels and receptors expressed within each nephron segment. Our previous work identified a critical role for Myh9 and Myh10 in mammalian endocytosis. Here, we examined the expression patterns of Nonmuscle myosin 2 (NM2) heavy chains encoded by Myh9, Myh10, and Myh14 in mouse kidneys as these genes may confer unique nephron segment-specific membrane transport properties. Interestingly, we found that each segment of the renal tubules predominately expressed only two of the three NM2 isoforms, with isoform-specific subcellular localization, and different levels of expression within a nephron segment. Additionally, we identify Myh14 to be restricted to the intercalated cells and Myh10 to be restricted to the principal cells within the collecting ducts and connecting segments. We speculate that the distinct expression pattern of the NM2 proteins likely reflects the diversity of the intracellular trafficking machinery present within the different renal tubular epithelial segments.
منابع مشابه
Pharmacological activation of myosin II paralogs to correct cell mechanics defects.
Current approaches to cancer treatment focus on targeting signal transduction pathways. Here, we develop an alternative system for targeting cell mechanics for the discovery of novel therapeutics. We designed a live-cell, high-throughput chemical screen to identify mechanical modulators. We characterized 4-hydroxyacetophenone (4-HAP), which enhances the cortical localization of the mechanoenzym...
متن کاملA Mec17-Myosin II Effector Axis Coordinates Microtubule Acetylation and Actin Dynamics to Control Primary Cilium Biogenesis
Primary cilia are specialized, acetylated microtubule-based signaling processes. Cilium assembly is activated by cellular quiescence and requires reconfiguration of microtubules, the actin cytoskeleton, and vesicular trafficking machinery. How these components are coordinated to activate ciliogenesis remains unknown. Here we identify the microtubule acetyltransferase Mec-17 and myosin II motors...
متن کاملZIPK is critical for the motility and contractility of VSMCs through the regulation of nonmuscle myosin II isoforms.
Migration of medial vascular smooth muscle cells (VSMCs) into the intimal layer contributes to pathological remodeling of the blood vessel in arterial hypertension and atherosclerosis. It is well established that reorganization of cytoskeletal networks is an essential component of cellular motile events. However, there is currently a lack of insight into the cellular characteristics of VSMC mig...
متن کاملSDCCAG8 Interacts with RAB Effector Proteins RABEP2 and ERC1 and Is Required for Hedgehog Signaling
Recessive mutations in the SDCCAG8 gene cause a nephronophthisis-related ciliopathy with Bardet-Biedl syndrome-like features in humans. Our previous characterization of the orthologous Sdccag8gt/gt mouse model recapitulated the retinal-renal disease phenotypes and identified impaired DNA damage response signaling as an underlying disease mechanism in the kidney. However, several other phenotypi...
متن کاملCALL FOR PAPERS Pathophysiology of Hypertension ZIPK is critical for the motility and contractility of VSMCs through the regulation of nonmuscle myosin II isoforms
Komatsu S, Ikebe M. ZIPK is critical for the motility and contractility of VSMCs through the regulation of nonmuscle myosin II isoforms. Am J Physiol Heart Circ Physiol 306: H1275–H1286, 2014. First published March 14, 2014; doi:10.1152/ajpheart.00289.2013.—Migration of medial vascular smooth muscle cells (VSMCs) into the intimal layer contributes to pathological remodeling of the blood vessel ...
متن کامل